
Python Compiler Internals

Thomas Lee <tom@vector-seven.com>

Abstract

In this paper we introduce a new language construct to demonstrate how one might go about modifying the
Python language compiler. The Python language itself is a powerful, dynamically-typed language that runs
on a variety of operating systems and platforms. The internals of the compiler itself follow a pattern common
to many language implementations, with lexical analysis, parsing and code generation phases. This makes
the Python source code a great place to learn how languages might be implemented in the more general
sense. By the end of the paper, it is hoped the reader will see that contributing to the Python language core
is not necessarily as difficult as it might seem.

1 Overview

It might surprise those who think of Python as a “scripting language” to learn that the core of
the Python interpreter actually has the structure of a classic compiler. When you invoke the
“python” command, your raw source code is scanned for tokens, these tokens are parsed into a
tree representing the logical structure of the program, which is finally transformed into bytecode.
Finally, this bytecode is executed by the virtual machine.

In order to demonstrate how the discrete components of the Python compiler fit together, we
will use the Python 2.6 code base to walk through the addition of a new language construct: the
“unless” statement, seen in Listing 1.

import sys

passwd = sys.stdin.readline().strip()

unless passwd == ’tehsecret’:

print ’Passwords do not match. Exiting!’

sys.exit(1)

Listing 1: The syntax of the unless statement

All code in this paper was written and tested against Python 2.6 beta 3, for which the Subversion
repository can be found here: http://svn.python.org/projects/python/tags/r26b3/. The
only thing that should change in the final 2.6 release is the line numbers referenced in the source
listings presented here.

1

mailto:tom@vector-seven.com
http://svn.python.org/projects/python/tags/r26b3/


2 Lexical Analysis 2

2 Lexical Analysis

Rather than directly trying to parse a stream of text, it is often easier – and faster – to break
the input text into a series of “tokens”, which might include keywords, literals, operators and/or
identifiers. These tokens can be inspected by the parser much more efficiently than a stream of
raw text. The process of transforming the input text into tokens is known as “lexical analysis”,
“tokenizing” or simply “scanning”.

The entry point to the lexical analyzer is the PyTokenizer Get function in Parser/tokenizer.c.
This function is called repeatedly from within the main parsing function, parsetok in Parser/parsetok.c,
which is in turn used by one of several higher level parsing functions.

To implement our “unless” statement, we don’t need to explicitly do anything to the tokenizer
code – we need only modify the grammar description, as we will see in the next section.

3 Parsing

For the compiler to make any meaning of the source program, the token stream emitted by the
lexical analyzer must be organized into some sort of structure. This is the job of Python’s parser,
which takes a token stream as input and – based on the rules declared in the Python grammar –
produces an Abstract Syntax Tree (AST).

Python uses a custom parser generator to automatically generate its parser from a grammar
description. The output of the parser is a parse tree, which can be thought of as a low level
representation of the parsed program in the structure defined by the grammar description.

In Python 2.5, an additional step was added to the parse phase: the construction of an Ab-
stract Syntax Tree (AST) from the parse tree. The AST, like the parse tree, is an in-memory
representation of the program being parsed albeit at a somewhat higher level and thus easier to
manipulate.

Now, to add our new “unless” construct to the Python language we must first modify the
grammar file – Grammar/Grammar – to describe the syntax of this feature, as in Listing 2.

/* Grammar/Grammar:78 */

if_stmt: ’if’ test ’:’ suite (’elif’ test ’:’ suite)* [’else’ ’:’ suite]

while_stmt: ’while’ test ’:’ suite [’else’ ’:’ suite]

unless_stmt: ’unless’ test ’:’ suite

for_stmt: ’for’ exprlist ’in’ testlist ’:’ suite [’else’ ’:’ suite]

Listing 2: Modifying the Python grammar to accommodate ‘‘unless’’

Since our “unless” statement is effectively an “if” statement with its test logic inverted, we
could use the existing “If” and “Not” AST nodes to implement this feature. In fact, this is how
the try..except..finally syntax was introduced in Python 2.5. However, for the purposes of this
paper we will modify the AST structure so we can demonstrate how to generate bytecode for our
new construct. To that end, we make a change to Parser/Python.asdl – which contains the AST
definition – as in Listing 3.

http://svn.python.org/projects/python/tags/r26b3/Parser/tokenizer.c
http://svn.python.org/projects/python/tags/r26b3/Parser/parsetok.c
http://svn.python.org/projects/python/tags/r26b3/Grammar/Grammar
http://svn.python.org/projects/python/tags/r26b3/Parser/Python.asdl


4 Code Generation 3

/* Parser/Python.asdl:25 */

| For(expr target, expr iter, stmt* body, stmt* orelse)

| While(expr test, stmt* body, stmt* orelse)

| Unless(expr test, stmt* body)

| If(expr test, stmt* body, stmt* orelse)

Listing 3: Adding a new type of AST node

Finally, we need to add some code to handle the transformation from the grammar to the AST
in Python/ast.c. Here we add ast for unless stmt, as seen in Listing 4.

/* Python/ast.c:2805 */

static stmt_ty

ast_for_unless_stmt(struct compiling* c, const node *n)

{

expr_ty test_expr;

asdl_seq *suite_seq;

/* unless_stmt: ’unless’ test ’:’ suite */

REQ(n, unless_stmt);

test_expr = ast_for_expr(c, CHILD(n, 1));

if (test_expr == NULL)

return NULL;

suite_seq = ast_for_suite(c, CHILD(n, 3));

if (suite_seq == NULL)

return NULL;

return Unless(test_expr, suite_seq, LINENO(n), n->n_col_offset, c->c_arena);

}

/* ... <snip> ... */

/* Python/ast.c:3125 */

case while_stmt:

return ast_for_while_stmt(c, ch);

case unless_stmt:

return ast_for_unless_stmt(c, ch);

Listing 4: The transformation from unless stmt to an Until AST node

The parse tree to AST transformation code follows the popular Visitor pattern. At line 3123,
we add a hook to call the appropriate transformation code if we encounter an unless stmt node in
the parse tree. Once inside our transformation function, we construct an Unless node by recursively
parsing the test and the body.

Note that after making these changes you may need to explicitly regenerate some files:

$ rm -f Python/graminit.c && make Python/graminit.c
$ rm -f Python/Python-ast.c && make Python/Python-ast.c

At this point, the compiler will be capable of scanning and parsing our new “unless” statement.
All that remains is to add code to generate the bytecode for our new AST node.

4 Code Generation

The next phase of compilation – code generation – takes the AST constructed in the previous phase
and produces a PyCodeObject as output. A PyCodeObject is an independent unit of executable

http://svn.python.org/projects/python/tags/r26b3/Python/ast.c


4 Code Generation 4

code, containing all the data and code necessary for independent execution by the Python bytecode
interpreter.

Before we look at more source code, it is important to understand that Python’s bytecode
interpreter is a stack-based virtual machine. This means that the process of bytecode execution
manipulates a data stack, with instructions adding, removing and operating upon the top couple
of stack elements. With that fresh in our mind, let’s look at how we generate bytecode from our
new Unless AST node in Listing 5 (we will discuss what the bytecode actually does in the next
section).

/* Python/compile.c:1623 */

static int

compiler_unless(struct compiler *c, stmt_ty s)

{

basicblock *end;

basicblock *next;

assert(s->kind == Unless_kind);

end = compiler_new_block(c);

if (end == NULL)

return 0;

next = compiler_new_block(c);

if (next == NULL)

return 0;

VISIT(c, expr, s->v.Unless.test);

ADDOP_JREL(c, JUMP_IF_TRUE, next);

ADDOP(c, POP_TOP);

VISIT_SEQ(c, stmt, s->v.Unless.body);

ADDOP_JREL(c, JUMP_FORWARD, end);

compiler_use_next_block(c, next);

ADDOP(c, POP_TOP);

compiler_use_next_block(c, end);

return 1;

}

/* ... <snip> ... */

/* Python/compile.c:2167 */

case If_kind:

return compiler_if(c, s);

case Unless_kind:

return compiler_unless(c, s);

Listing 5: Generating bytecode for the Unless AST node

At this point, our implementation of the “unless” statement is complete. Recompile Python
and try it out:

$ ./configure && make clean && make
$ ./python <<EOF
> dv = False
> unless v:
> print ’test’
> EOF
test

See Python/compile.c for the full details of Python’s bytecode generator.

http://svn.python.org/projects/python/tags/r26b3/Python/compile.c


5 Code Execution 5

5 Code Execution

The execution of Python bytecode is handled by the bytecode interpreter. As mentioned in the
previous section, the interpreter is a stack-based virtual machine that executes Python bytecode
instructions which operate on a single data stack. We do not need to make any changes to the
bytecode interpreter itself for our “unless” statement to work, but let’s take a closer look at how it
interprets the bytecode we generated in the previous section.

We first execute the test expression, the result of which will be pushed onto the stack. Next, the
JUMP IF TRUE opcode will inspect the value on the top of the stack and determine whether or
not it has a value representing truth. If it does, we skip the body entirely and continue execution
at the end of the “unless” statement. If the expression evaluates to a false value, however, the
compiler will execute the body of the “unless” statement.

You will also notice that the first instruction of whichever branch is executed is to pop the
topmost element off the data stack (POP TOP). This is because the JUMP IF TRUE expression
leaves the tested expression on the stack. In our case, we no longer need the value of the test
expression so it is simply discarded with the execution of the POP TOP instruction.

If you are interested in the details of what the individual bytecodes do, documentation for
all Python bytecodes can be found at http://docs.python.org/lib/bytecodes.html. Also, see
PyEval CodeEvalEx and PyEval EvalFrameEx in Python/ceval.c if you are interested in looking at
the bytecode interpreter itself in more detail.

6 Conclusion

It should now be clear that one doesn’t have to be a rocket scientist to contribute to the core of the
Python language. If you are at all interested in how the internals of a real world compiler work,
Python is a great place to start. If you’re unsure of where to go next, here are a couple of ideas
that will be both achievable and educational for the entry-level Python hacker:

1. Rewrite the “unless” construct using only existing AST nodes

2. Add a new operator to the language by modifying the tokenizer

3. Investigate how builtin functions work under the hood

4. Investigate the symtable pass

There’s much to learn from tinkering with the code, and more still by making an active con-
tribution to the project by fixing bugs, contributing documentation or answering newbie questions
on the user mailing list. Give it a go – you might just surprise yourself.

http://docs.python.org/lib/bytecodes.html
http://svn.python.org/projects/python/tags/r26b3/Python/ceval.c

	Overview
	Lexical Analysis
	Parsing
	Code Generation
	Code Execution
	Conclusion

